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Abstract Alternative splicing (AS) can critically affect gene function and disease, yet mapping

splicing variations remains a challenge. Here, we propose a new approach to define and quantify

mRNA splicing in units of local splicing variations (LSVs). LSVs capture previously defined types of

alternative splicing as well as more complex transcript variations. Building the first genome wide

map of LSVs from twelve mouse tissues, we find complex LSVs constitute over 30% of tissue

dependent transcript variations and affect specific protein families. We show the prevalence of

complex LSVs is conserved in humans and identify hundreds of LSVs that are specific to brain

subregions or altered in Alzheimer’s patients. Amongst those are novel isoforms in the Camk2

family and a novel poison exon in Ptbp1, a key splice factor in neurogenesis. We anticipate the

approach presented here will advance the ability to relate tissue-specific splice variation to genetic

variation, phenotype, and disease.

DOI: 10.7554/eLife.11752.001

Introduction
Production of distinct mRNA isoforms from the same locus has been shown to be common phenom-

ena across metazoans (Barbosa-Morais et al., 2012; Merkin et al., 2012). Different isoforms may

arise through the use of alternative transcription start and end sites, or through alternative process-

ing of pre-mRNA. A key process is alternative splicing (AS) of pre-mRNA, where different subsets of

pre-mRNA segments are removed while others are joined, or spliced together. The resulting differ-

ences between the mature mRNA isoforms can, in turn, encode different protein products, or affect

mRNA stability, localization, and translation. Over 95% of human multiexon genes undergo AS, and

disease associated genetic variants have been shown to frequently lead to splicing defects

(Cooper et al., 2009; Pan et al., 2008; Wang et al., 2008). These observations emphasize the need

to accurately map and quantify splice variations.

RNA-Seq technology has advanced the detection and quantitation of splice variants by producing

millions of short sequence reads derived from the transcriptome. Despite constant technological

advancement, the combination of limited coverage depth, experimental biases, and reads spanning

only a small fraction of the variable parts of transcripts has left accurate mapping of transcriptome

variations an open challenge (Alamancos et al., 2014).
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Transcriptome variations have been traditionally studied either at the level of full gene isoforms

or through the specification of alternative splicing ’events’. The latter have been categorized into

several common types, such as intron retention, alternative 3’/5’ splice sites, or cassette exons.

Importantly, while exact isoforms and their quantifications cannot be directly inferred from the short

RNA-Seq reads, AS events can be detected via reads that span across spliced exons (junction reads).

Both AS events and full isoforms can be captured by a gene schematic or a splice graph

(Heber et al., 2002), where edges (lines) connect pre-mRNA segments spliced together in different

transcripts (Figure 1A, top).

While useful, the previously defined AS types fail to capture the full complexity of spliceosome

decisions. Specifically, AS types represent spliceosome decisions as strictly binary, involving only two

exons or two splice sites in the same exon. The bottom panel in Figure 1A illustrates a few possible

splicing variations that do not fit the previously defined AS types and can involve more than two

alternative junctions.

Figure 1B serves as a visual summary for both the potential and challenges in analyzing splicing

variations. Combining known transcripts and RNA-Seq data results in the Camk2g splice graph

shown (Figure 1B, top). This splice graph includes novel, unannotated, splice junctions detected

from junction spanning RNA-Seq reads (green), as well as a complex case where exon 14 can be

spliced to exons 15, 16, or 17 (Figure 1B, middle). Quantification by RT-PCR in several mouse tissues

validate the existence of these variations and also points to isoforms that are predominantly pro-

duced in brain subregions and in muscle (Figure 1B, bottom). In order to achieve such results we

need to have a computational framework that efficiently combines RNA-Seq with existing gene

annotation and enables us to accurately detect, quantify, and visualize diverse splicing variations

across different experimental conditions.

eLife digest Genes contain coded instructions to build other molecules that are collectively

referred to as gene products. Building these products requires the gene’s instructions to be copied

into a molecule of RNA in a process called transcription. Over 90% of human genes undergo a

process by which different segments of the transcribed RNA molecule are either removed or

retained. This process, termed alternative splicing, results in a single gene encoding different gene

products that can perform in different ways.

Alternative splicing can also mean that gene products vary between different cells, tissues and

individuals. Some of these variations can be harmful and lead to disease. However, it is difficult with

current methods to accurately identify variations in gene products that are due to alternative

splicing and see how these products differ between groups of people, such as patients and healthy

controls.

Vaquero-Garcia, Barrera, Gazzara et al. have now developed new methods to define, measure

and visualize the variations in RNA gene products. First, splicing variations were catalogued across a

range of species from lizards to humans, which revealed that some fairly complicated variations were

much more common than previously appreciated. These complex variations had not been studied

much before, but the new methods showed that they make up a third of the variations in the RNA

products copied from human genes.

Vaquero-Garcia, Barrera, Gazzara et al. then showed that the new methods are more accurate

and sensitive than previous methods, and can be used to discover splicing variations that were

previously unknown. For example, applying the new methods to data collected in other studies

revealed variations in genes that are important for brain development and activity. Further analysis

then showed that these variations were also altered in brain samples from patients with Alzheimer

disease.

The new methods developed by Vaquero-Garcia, Barrera, Gazzara et al. can now shed new light

on gene product variations, especially the more complex ones that have not been studied before.

The next challenge is to use these tools to better understand the regulation and purpose of splicing

variants and how they can contribute to diseases in humans.

DOI: 10.7554/eLife.11752.002
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Results

Formulation of local splicing variations (LSVs)
To address the shortcomings of previously defined AS types we suggest the formulation of local

splicing variations, or LSVs. LSVs are defined and easily visualized as splits (multiple edges) in a splice

graph where several edges either come into or from a single exon, termed the reference exon. A

Single Source (SS) LSV (Figure 1, yellow) corresponds to a reference exon spliced to several down-

stream RNA segments while single target (ST) LSV (Figure 1, pink) corresponds to a reference exon

spliced to upstream segments. The full specification of an LSV also includes the relative location of

the exons and junctions (see Material and methods). Figure 1A illustrates how this formulation

Figure 1. LSV formulation and prevalence. (A) LSVs can be represented as splice graph splits from a single source

exon (yellow) or into a single target exon (pink). LSV formulation captures previously defined, ’classical’, binary

alternative splicing cases (top) as well as other variations (bottom). An asterisk denotes complex variations

involving more than two alternative junctions; dash line denotes redundant LSVs that are a subset of other LSVs

(see Materials and methods). (B) Example of a complex LSV in the Camk2g gene. The gene’s splice graph (top)

includes known splice junctions from annotated transcripts (red) and novel junctions (green) detected from RNA-

Seq data. The splice graph includes a complex LSV involving exons 14–17 (middle). RT-PCR validation of the LSV

in brainstem, cerebellum, hypothalamus, muscle, and adrenal is shown at the bottom. Several isoforms are

preferentially included in brain and muscle.

DOI: 10.7554/eLife.11752.003
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captures previously defined AS types (top panel) as well as more complex cases (bottom panel). Spe-

cifically, previously defined ’classical’ AS events appear as special cases of binary graph splits (e.g.,

include or skip a cassette exon), while LSVs capture non-classical binary splits and splits involving

more than two junctions. Such non-binary splits are termed complex LSVs. LSVs can also involve

intron retention (intronic LSVs) or be comprised of only exons (exonic LSVs). Moreover, the transcrip-

tome variability captured by LSVs may be the result of not only spliceosome decisions but also of

alternative transcription start or end positions. For example, the gene in Figure 1A bottom panel

involves two alternative first exons so a relative change in the transcription start site usage can result

in changes in downstream LSVs quantification. Importantly, LSV formulation allows the probing of

transcriptome structure and complexity yet, unlike full transcripts, can still be quantified directly

from junction spanning reads.

LSV detection, quantification and visualization using MAJIQ
In order to address the challenges involved in detection, quantification and visualization of LSVs we

developed a new computational framework that we have termed Modeling Alternative Junction

Inclusion Quantification (MAJIQ). MAJIQ’s first step (Figure 2A, top) is to parse a known database

of transcripts, given as a GFF3 annotation file, along with a set of mapped and aligned RNA-Seq

experiments (indexed BAM files). Unlike many methods that only analyze known isoforms, MAJIQ

supplements known transcripts with ’reliable’ edges derived from de novo junction spanning reads.

Several filters can be applied to define which edges are considered reliable and which LSVs have

enough reads to be later quantified (see Material and methods). Similarly, LSVs whose edges are a

subset of other LSVs, such as those denoted with dashed rectangles in Figure 1A, are removed to

avoid redundancy (see Material and methods). Next, MAJIQ can be executed to quantify LSVs either

in a specific condition or to compare two experimental conditions, with or without replicates. LSV

quantification in a specific condition is based on the marginal percent selected index (PSI, denoted

Y) for each junction involved in the LSV, while comparison of experimental conditions is based on

relative changes in PSI (dPSI, DY). MAJIQ uses a combination of read rate modeling, Bayesian Y

modeling, and bootstrapping to report posterior Y and DY distributions for each quantified LSV.

The results of MAJIQ’s LSV detection and quantification can be interactively visualized with the pack-

age VOILA in a standard web browser (Figure 2A bottom).

We assessed MAJIQ’s quantification accuracy for both Y and DY using a combination of RNA-

Seq from biological replicates and an extensive set of 208 RT-PCR validations. These experiments

included two mouse tissues (cerebellum and liver [Zhang et al., 2014]), and a human Jurkat T cell

line (unstimulated and stimulated, [Cole et al., 2015]). While accuracy depended on the dataset

used, MAJIQ achieved an overall correlation of R = 0.8 and R = 0.95 for PSI and dPSI quantification

by RT-PCR, comparing favorably to alternative methods on all datasets (Figure 2B,C, Figure 2—fig-

ure supplement 1). Next, we used biological replicates from the Mouse Genome Project

(Keane et al., 2011) to assess reproducibility of differential splicing detection from RNA-Seq when

comparing two experimental conditions. The reproducibility ratio (RR, see Material and methods)

captures the fraction of top ranked differentially spliced LSVs that maintain their top ranking when

analyzing another set of replicate experiments. Figure 2D shows MAJIQ compares favorably to

other methods, including MISO (Katz et al., 2010), rMATS (Shen et al., 2014), and a bootstrapping

approach (Xiong et al., 2015) adopted for LSV. While MISO and rMATS achieved a reproducibility

ratio of 61–67% we found the bootstrapping approach (N.B.) suffered from particularly high vari-

ance, which degraded reproducibility of LSVs ranking. In comparison, MAJIQ achieved a mean

RR=77% when comparing two pairs of experiments and improving to RR=86% when the experi-

ments compared had replicates. Notably, detection power was also improved. Defining differentially

spliced LSVs as those for which P(|DY|>0.2) > 0.95, the number of detected LSVs (N), after removing

LSVs overlap (see Materials and methods), was on average 400 for pairwise and 447 for group com-

parisons, compared to 240 and 260 respectively by rMATS. The improvement in both detection and

reproducibility of differentially spliced LSVs (N, RR) was robust to the statistical threshold used to

define N (Figure 2—figure supplement 2A) and when we removed MAJIQ’s de-novo junction

detection the number of LSVs dropped as expected but reproducibility remained high (N = 337,

RR= 87%, data not shown). Importantly, this result also indicated that including de-novo junctions

increased the number of differentially spliced LSVs that could be detected by over 30% (337 vs.

447), while retaining equivalent reproducibility. Defining differential splicing reproducibility by RT-
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Figure 2. LSV analysis using MAJIQ. (A) MAJIQ’s analysis pipeline. RNA-Seq reads are combined with an

annotated transcriptome to create splice graphs and detect LSVs for each gene, then LSVs are quantified and

compared between conditions. The visual output (VOILA) lists LSVs with violin plots representing estimates of

percent inclusion index (PSI, Y) or changes in inclusion (dPSI, DY). Two cases are illustrated, for a single source

three way LSV (orange), and a single target two way LSV (pink). (B) Correspondence between E[Y] by MAJIQ and

Y by RT-PCR. R is the correlation coefficient. Colors and shapes represent different experimental conditions:

mouse cerebellum and liver (dark and light orange diamonds, respectively); human unstimulated and stimulated T-

Cells (dark and light purple dots, respectively). Total n = 208. (C) Correspondence between E[DY] by MAJIQ and

DY by RT-PCR, where |DYRT|>0.2. R is the correlation coefficient. Changes in inclusion were measured between

liver and cerebellum mouse tissues (diamonds, n = 45); stimulated and unstimulated T-Cells (dots, n = 9). (D)

Figure 2 continued on next page
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PCR as LSVs for which |DYRT|>20% resulted in 95% reproducibility. The higher reproducibility by RT-

PCR can be expected given the lower experimental variability compared to RNA-Seq. Notably, the

LSVs tested by RT-PCR were selected to cover a wide spectrum of read depth. We found that while

higher coverage allowed more differential LSVs to be detected and steadily increased reproducibility

by RNA-Seq, MAJIQ’s reproducibility by RT-PCR was stable across read coverage depth, pointing to

the robustness of the method (Figure 2—figure supplement 2B). Finally, we note that the above

RT-PCR evaluation concentrated on binary LSVs to allow comparison to currently available methods,

but we observed similar accuracy for the quantification of complex LSVs (Figure 2—figure supple-

ment 2C).

Complex LSV are prevalent in diverse metazoa
To assess the significance of LSVs formulation we estimated LSVs prevalence in several metazoans,

ranging from lizard to human (Figure 3). Naturally, this analysis is affected by how well a species

transcriptome is annotated, and how permissive the database used is. In human for example, com-

plex LSVs constitute 20.6% to 33.7% of the LSVs in annotated transcripts by RefSeq and Ensembl

respectively, but only 1.86% in opossum’s Ensembl annotation (Figure 3A,B). Next, we expanded

the set of annotated transcripts with novel junctions detected from RNA-Seq junction spanning

reads. Limiting our analysis to only 5–6 similar tissues in all species and conservative junction detec-

tion still increased the total number of LSVs in human by 11% and the fraction of complex LSVs from

33.7% to 37.1% (Figure 3A). In species not as well annotated the effect of adding RNA-Seq data

was more dramatic, jumping in opossum for example from 1,610 to 10,228 LSVs, of which 10% were

complex. In summary, while LSV analysis across species was confounded by read coverage and tran-

scriptome annotation we find that non-classical and complex LSVs make up a substantial fraction of

observed transcriptome variations. Such complex LSVs are likely to be removed, undetected, or mis-

labeled by algorithms that only quantify binary AS events from previously annotated transcripts.

A genome wide view of LSV across 12 mouse tissues
Given the clear impact of the RNA-Seq dataset and transcriptome annotation, we chose to focus our

genome wide analysis on a recent mouse dataset. This allowed us to analyze 12 tissues with an aver-

age of over 120M reads per sample, produced by a single lab (Zhang et al., 2014). This data

included three brain subregions, eight samples per tissue, and matching RNA for RT-PCR valida-

tions, leading to a total of 100,512 LSVs detected. First, we used this data to assess the usage of

LSVs across tissues. In order to minimize LSVs that result from false junctions identified by the map-

per we only included junctions with multiple uniquely mapped staggered reads across multiple bio-

logical replicates (see Material and methods). Next, we tested the maximal inclusion level of the

second, third, or the least used junction in an LSV across twelve mouse tissues. We detected a switch

behavior where a different junction becomes dominant at 50% inclusion or more in approximately

5% of the classical binary LSVs (Figure 4A, grey), compared to 12% for the second most used junc-

tion in complex LSVs (Figure 4A, light green). Setting a conservative threshold of Y > 10% to

Figure 2 continued

Reproducibility ratio (RR) of high confidence differentially included LSVs, i.e. LSVs for which P(|DY|> 0.2) > 0.95),

when comparing RNA-Seq from two conditions. A differentially included LSV is considered replicated if it

maintains a rank at least as high as N in biological replicates, where N is the set size. LSVs are ranked by E[DY]

and filtered for overlap. Twelve replicate pairs from Keane et al. (2011) were used to compute the histogram’s

std (light blue). Other lines show MAJIQ’s RR with replicates (thick blue), RR for AS events detected by rMATS w/

wo replicates (light and dark green), MISO (red), and RR for LSVs using Naı̈ve Bootstrapping (orange). The inset

bar chart shows the number of LSVs or AS events (N) derived by each method and used in the RR plots (see

Materials and methods for more details).

DOI: 10.7554/eLife.11752.004

The following figure supplements are available for figure 2:

Figure supplement 1. Quantifying PSI and dPSI accuracy.

DOI: 10.7554/eLife.11752.005

Figure supplement 2. Quantifying differential splicing reproducibility.

DOI: 10.7554/eLife.11752.006
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denote splice junctions that are less likely to be splicing noise or database errors we find that for the

classical binary LSVs approximately 32%, or 9,516 pass that threshold, compared to 57% and 19% of

the complex LSVs that pass that threshold for the second and third most used junction respectively.

These correspond to a total of 6,338 and 2,112 LSVs in our datasets, pointing to the importance of

complex LSVs in transcriptome analysis. Even when testing for the least used junction in complex

LSVs (e.g. the ninth in a nine junction LSV), we still find almost 10% pass the 10% inclusion threshold

(Figure 4A, dark green). Finally, for intronic LSVs we find almost 11,000 cases where an intron is

retained at least 50% in one tissue, and 3,844 cases where the intron is almost always retained with

Y > 99% (Figure 4—figure supplement 1D). This observation of widespread intron retention (IR),

especially in brain tissues, is in line with a recent study across many more tissues and cell lines

(Braunschweig et al., 2014), though our overall estimate of IR prevalence is more conservative.

Commonly occurring network substructures, or network motifs, have garnered much research

attention in diverse fields (Milo et al., 2002). Gene splice graphs can also be thought of as networks

with exons as nodes and spliced junctions as edges. In this interpretation, LSVs can be thought of as

small network motifs and used to shed light on the transcriptome complexity and commonly reoc-

curring sub-structure. Comparing the frequency of exonic LSV types (Figure 4B) we find that the

more common non classical LSVs involve 3 to 5 exons, combine exon skipping with an alternative 3’/

5’ splice site, or involve alternative transcript start/end at the LSV’s reference exon. In contrast,

intronic LSVs are much less diverse, with classical intron retention making 68% of the cases (Fig-

ure 4—figure supplement 1C). Figure 4C shows that for exonic LSVs 14% involve more than

2 exons, 30% of the single source and 20% and of the single target LSVs involve a reference exon

with two or more 5’/3’ splice sites, respectively. Overall, complex (non-binary) LSVs comprise 36.2%

of the transcriptome variations detected in the data and 27.5% of the variations deemed quantifiable

(see Materials and methods), yet spliceosome decisions still appear localized, with few LSVs involving

more than 6 exons or junctions. When analyzing LSVs usage, we found that the biochemical

Figure 3. LSV prevalence across diverse metazoans. (A) Number of LSVs (top) and fraction of complex LSVs (bottom) when using Ensembl annotated

transcripts only (grey) or combining it with RNA-Seq from 5–6 similar tissues (red). Mouse* is the dataset from Zhang et al. (2014). (B) Number of LSVs

(top) and fraction of complex LSVs (bottom) when using RefSeq (orange) and Ensembl (blue). The RNA-Seq dataset is the same as in (A).

DOI: 10.7554/eLife.11752.007
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Figure 4. Genome wide view of exonic LSVs across twelve mouse tissues. (A) Cumulative distribution (CDF) for maximal junction inclusion (PSI) across

tissues. Plot includes the least used junction in binary LSV (grey), the second, third and least used junction in complex LSVs (light, medium, dark green).

Dashed vertical line denotes 10% inclusion. (B) Histogram of the most common exonic LSV types. (C) Histogram of the number of exons, junctions, 3’

and 5’ splice sites in all identified LSV. (D) Histogram of which 3’ (left) or 5’ (right) splice site are found to be dominant across all tissues and all LSVs. X-

axis denotes the order of the splice site. Dominance is defined as E[Y] > 0.6. Cases with no dominant junction are represented by the bars on the far

left. (E) The fraction of complex LSVs (green, top right) from the total number (purple, bottom left) of differentially spliced LSVs (|E[DY]| >0.2) between

pairs of tissues.

DOI: 10.7554/eLife.11752.008

The following source data and figure supplement are available for figure 4:

Source data 1. dPSI values for all pairs of tissues.

DOI: 10.7554/eLife.11752.009

Figure supplement 1. Intronic LSV detection and quantification.

DOI: 10.7554/eLife.11752.010
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’proximity rule’, by which the splice site nearest to the reference exon is preferred (Reed and Mania-

tis, 1986), is commonly not reflected at the genomic level. Defining ’dominant’ junctions as those

included at least 60%, we found proximal junctions appear dominant in approximately two thirds of

the cases involving binary LSVs (Figure 4D) while more complex LSV tend to have more evenly dis-

tributed inclusion levels with no dominant junction (Figure 4D, left bars). This more evenly distrib-

uted usage of exons and junctions in complex LSVs further supports possible functionality of

multiple isoforms.

Figure 4E gives a genome wide view of the exonic LSVs that exhibit significant splicing changes (|

E[DY]|> 20%) between mouse tissues. In line with previous reports (Barash et al., 2010; Barbosa-

Morais et al., 2012), we find clear clusters for brain and muscle tissues (average of 875 and

657 changing LSVs, respectively), a weaker cluster for digestive tissues (liver, kidney) with an average

of 501 changing LSVs, and lung as a unique signal (549 changing LSVs). Brain regions have a higher

average of 927 (Cerebellum) to 840 (brainstem) changing LSVs compared to non-brain tissues. The

number of LSVs changing between brain subregions varies between 36% and 57% of those changing

between CNS and non-CNS tissues, with hypothalamus standing out as more similar to the two

other CNS tissues (average of 937 and 343 changing LSVs when compared to non brain and other

brain sub-regions, respectively). Overall, we find that complex LSVs make up almost 47% of the dif-

ferentially spliced LSVs, a fold enrichment of 1.7 compared to their relative proportion of 27.5% in

the quantifiable set (P < 2.3 x10-278, binomial test).

Complex LSV are enriched in regulated splicing that is associated with
higher intronic conservation and specific protein features
Given the above result of complex LSV enrichment in tissue dependent splicing variations we

decided to test whether this enrichment holds in other datasets that involve developmental stages,

splice factor knockdowns, and disease. We performed a meta analysis of 31 mouse datasets that

involve a total of 243 RNA-Seq experiments covering a variety of tissues, cell lines, developmental

stages, and knockdowns of key splicing factors. To this set we also added a human dataset compar-

ing Alzheimer’s disease and healthy brain samples (Figure 5A and below). We found the median

fraction of complex LSV in these datasets was 0.309 and their median fold enrichment in differen-

tially spliced LSVs was 1.63, a significant enrichment in 30/32 of the datasets (1.6x10-322 < p-val <

1x10-3, Bonferroni corrected binomial test, see Figure 5A, and Figure 5—source data1). This con-

sistent overrepresentation of complex LSVs among differentially spliced LSVs across a variety of con-

texts further suggests that complex LSVs are an important aspect of regulated alternative splicing.

Next, we asked how does the inclusion of junctions change across these datasets. For this, we

took a conservative approach monitoring only the LSVs that have been already identified in normal

tissues used to build the genome wide view of LSVs (Figure 4). Figure 5B shows over 20% of all

complex LSVs detected in more than one sample had the third most differentially included junction

exhibit |DY|> 10%, corresponding to 2,236 LSVs. Strikingly, these additional experimental contexts

showed that over 39% of all complex LSVs detected in our normal tissue set had their third most

included junction with Y > 10%, corresponding to 4,201 LSVs (Figure 5—figure supplement 1).

Finally, we plotted the conservation level around constitutive exons and differentially spliced LSVs

shown in Figure 4 that are either binary or complex (Figure 5C). Inline with previous reports, we

found tissue regulated splicing involves significantly higher conservation in the intron proximal to the

variable exonic segments, a region known to include cis elements to which tissue specific splice fac-

tors bind. However, we also found that differentially spliced complex LSVs exhibited significantly

higher conservation levels in these regions compared to their binary counterparts. This finding may

be the result of the more complex splicing changes that need to be controlled or tighter control

associated with complex LSVs specific function. In summary, these different lines of evidence all sup-

port the functional relevance and utility of accurately mapping and quantifying complex splicing var-

iations in genome wide studies.

The observed evolutionary pressure to conserve intronic segments around tissue dependent LSV

raises the questions what are the functional consequences of LSVs and whether complex LSVs are

functionally distinct from classical binary ones. To probe possible function we mapped exons in LSVs

into their matching protein domains (see Material and methods). We then grouped LSV junctions

based on whether they were part of binary or complex LSVs and whether they were differentially

included across tissues. In line with previous works (Ellis et al., 2012), we find that binary LSVs, such
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as cassette exons, which are also differentially included across tissues, more frequently affect low-

complexity, disordered regions when compared to non-changing binary LSVs (p<1x10-4, corrected

Fisher’s exact test). Interestingly, differentially included complex LSVs are similarly enriched for such

low-complexity regions (p<1x10-4), but also show enrichment for specific protein families (e.g. spec-

trin/filamin) and domains (e.g. RNA recognition motifs) when compared to non-changing complex

LSVs. These families and domains are largely distinct from those enriched in binary LSVs (e.g. WW

domains or coiled coils). The complete list of enriched protein features can be found in

Supplementary file 1. Overall, this analysis suggests that regulated alternative splicing of both

binary and complex LSVs can affect protein interactions via unstructured protein regions, or affect

the inclusion of distinct protein domains in specific families.

Figure 5. Meta analysis of complex LSVs. (A) Fold enrichment (green dots) of complex LSVs calculated by comparing the fraction of complex LSVs

among differentially spliced LSVs (dark blue bars) to their relative proportion (light blue bars) in 32 datasets. The corrected p-value column on the left

measures significance of the fold enrichment (binomial test, Bonferroni corrected p-value) Medians are displayed for fold enrichment (green line, 1.63),

fraction of complex LSVs among changing LSVs (orange line, 0.52), and fraction of complex LSVs among all detected LSVs (red line, 0.31). Human AD

versus healthy brain data corresponds to the cohort from (Bai et al., 2013). See Figure 5—source data 1 for more information. (B) Empirical

cumulative distribution function (CDF) of the maximal change of junction inclusion ( DY ) across all mouse datasets in Figure 5A. Only the LSVs

detected in the twelve mouse tissues (Figure 4) are included. The plot includes junctions in binary LSVs (grey), and the second, third, and least

changing junction in complex LSVs (light, medium, dark green). Dashed vertical line denotes DY of 10%. (C) Per nucleotide average conservation score

(phastCons60 track) in regions proximal to single source (top) and single target (bottom) LSVs that were differentially spliced between any pair of

tissues shown in Figure 4. The average is plotted for the subsets of complex (green) LSVs and binary (grey) LSVs as well as around a randomly selected

set of constitutively spliced junctions (red, see Materials and methods for details).

DOI: 10.7554/eLife.11752.011

The following source data and figure supplement are available for figure 5:

Source data 1. LSV enrichment meta analysis table.

DOI: 10.7554/eLife.11752.012

Figure supplement 1. Empirical cumulative distribution function (CDF) of the maximal junction inclusion (E[C]) across all mouse datasets in Figure 5A.

DOI: 10.7554/eLife.11752.013
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MAJIQ detects a novel, brain-specific, PTC-introducing,
developmentally- regulated exon in Ptbp1
To further demonstrate the power of MAJIQ and our LSV based approach we validated a set of

complex LSVs that exhibit tissue and brain region dependent splicing patterns. Surprisingly, this

analysis revealed a previously uncharacterized, brain-specific exon in the gene encoding PTBP1, an

extremely well studied splicing factor critical to neural development (Keppetipola et al., 2012)

(Figure 6A, Figure 6—figure supplement 1A). While this novel exon remained undetected when

running cufflinks (Trapnell et al., 2010) on this dataset (data not shown), expression of this novel

exon as part of a complex LSV was supported by RT-PCR from cerebellum and adrenal tissues

(Figure 6B, top) with good concordance with MAJIQ’s PSI quantification (Figure 6B, bottom). Prod-

ucts including exon 14 were also weakly detected by RT-PCR of brainstem and hypothalamus-

derived RNA, but not from any of the other eight tissues tested (Figure 6—figure supplement 2).

Together these data strongly support exon 14 as brain-specific.

Interestingly, Ptbp1 exon 14 shows conservation of splice sites between mouse and human and

inserts multiple premature termination codons (PTCs) in both species, as well as in other mammals,

before RMMs 3–4 of PTBP1 (Figure 6—figure supplement 1A,B), suggesting that mRNAs including

this exon are likely targets of nonsense-mediated decay (NMD). Regulated alternative splicing that

introduce PTCs is a common theme among numerous splicing factors (Ni et al., 2007) and exclusion

of Ptbp1 exon 16 (exon 11 in the literature) has already been identified and shown to induce NMD

(Figure 6—figure supplement 1A) (Wollerton et al., 2004). Remarkably, exclusion of exon 16 is

barely detectable in the brain regions examined and inclusion of exon 14 is not associated with this

event (Figure 6—figure supplement 1C). Together, this suggests that these splicing events are

independent mechanisms to control Ptbp1 expression and that inclusion of novel exon 14 plays a

larger role in the brain regions examined, with 26% of the Ptbp1 transcripts in the cerebellum con-

taining PTCs.

Embryonic down regulation of Ptbp1 by miR-124 is crucial at the onset of neurogenesis

(Makeyev et al., 2007) and leads a change in splicing programs (Boutz et al., 2007;

Keppetipola et al., 2012), but cannot account for additional postnatal down regulation of this pro-

tein (Boutz et al., 2007; Zheng et al., 2012). Remarkably, MAJIQ analysis of RNA-seq data from

mouse cortices across development (Yan et al., 2015) reveals clear developmental regulation of

exon 14 with a dramatic increase in inclusion from P15 through adulthood (Figure 6C). Taken

together, this complex LSV offers a novel mechanism for postnatal neuronal reduction in Ptbp1.

To identify putative regulators of novel exon 14, we used AVISPA (Barash et al., 2013), a web

tool that utilizes splicing code models to suggest motifs important for tissue-specific splicing, and

identified the [U]GCAUG binding motif of the Rbfox family as important for neuronal splicing out-

come (Figure 6D). AVISPA’s map of regulatory motifs pointed to a number of Rbfox binding sites

downstream of exon 14 (Figure 6A). These motifs, perfectly conserved between mouse and human,

suggested enhancement of inclusion by the Rbfox family (Lovci et al., 2013). Consistent with this

regulatory hypothesis, MAJIQ analysis of RNA-seq data from one month old nestin-specific Rbfox1

KO mice revealed a marked decrease in inclusion of exon 14 from ~16% in wild type mice to nearly

undetectable in the KO (Figure 6E; Figure 6—figure supplement 1D) and similar decreased inclu-

sion was observed upon Rbfox2 KO (Lovci et al., 2013) (Figure 6—figure supplement 1E).

Together these data demonstrate the power of MAJIQ, in combination with the VOILA and AVISPA

analysis tools, in identifying previously uncharacterized isoforms and understanding the regulation of

biologically important transcript variation.

MAJIQ detects novel splicing variations in the CAMK2 family which are
conserved, developmentally regulated, and dysregulated in AD
Several of the brain specific LSVs we detected were found in genes encoding calcium/calmodulin-

dependent protein kinase II (CAMK2) subunits which regulate functions in the brain such as neuro-

transmitter synthesis and release, cellular transport, neurite extension, synaptic plasticity, learning

and memory (Griffith, 2004). We focused on Camk2d and Camk2g as these exhibit complex

changes and were expressed in nearly all tissues examined (Figure 4—source data 1). Figure 1B

and Figure 7—figure supplement 1B show MAJIQ’s analysis and matching RT-PCR validation of a

Camk2g LSV containing three exons across five tissues. Figure 7 shows similar verification for
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Figure 6. Identification of a novel, brain-specific, PTC-introducing, developmentally-regulated exon in Ptbp1. (A) Top: Splice graph representation of a

complex target LSV containing a previously unannotated, PTC-introducing exon in Ptbp1 (exon 14, green). Stop signs indicate multiple conserved

premature termination codons. Bottom: UCSC Genome Browser tracks of RNA-seq reads from adrenal (red) and cerebellum (blue), and conserved

Rbfox binding sites ([U]GCAUG) found within the bounds of this LSV. (B) Top panel: RT-PCR validation of RNA from replicate cerebellar and adrenal

tissues with isoforms illustrated on the left. Asterisk denotes a background band that migrates non-specifically. Bottom panel: E[Y] violin plots of

MAJIQ quantification for the colored junctions in (A). Matching isoforms are indicated on the left. (C) Top: RNA-seq reads from mouse cortices

(Yan et al., 2015). Developmental time points indicated on the right with exons colored as in (A). Bottom: Y violin plots for the PTC-introducing exon

14 across brain development. (D) Top panel: Top regulatory motifs predicted by AVISPA to influence the neuronal-specific splicing of exon 14. Stacked

bars represent the normalized feature effect (NFE) for each motif. Colors indicate the contribution of the corresponding motif in the region indicated in

the inset. (E) MAJIQ Y quantification of the LSV shown in (A), using RNA-seq from one month old wild type whole brain (left) and nestin-specific Rbfox1

KO littermates (right).

DOI: 10.7554/eLife.11752.014

The following figure supplements are available for figure 6:

Figure supplement 1. Novel exon and PTCs in Ptbp1 are conserved, independent from known PTC event, and regulated by Rbfox1 and 2.

DOI: 10.7554/eLife.11752.015

Figure 6 continued on next page

Vaquero-Garcia et al. eLife 2016;5:e11752. DOI: 10.7554/eLife.11752 12 of 30

Research article Computational and systems biology Genes and chromosomes

http://dx.doi.org/10.7554/eLife.11752.014
http://dx.doi.org/10.7554/eLife.11752.015
http://dx.doi.org/10.7554/eLife.11752


another complex LSV but in Camk2d. In both cases, exon inclusion creates consensus NLS motifs

(KKRK), which localize these subunits to the nucleus (Braun and Schulman, 1995). For Camk2g the

NLS motif is contained in exon 15 whose inclusion levels are highest in the brain, particularly in the

brainstem (Figure 1B, Figure 7—figure supplement 1B).

Several other important aspects of Camk2d splicing are accurately captured by MAJIQ. These

include near 100% skipping of exons 21 through 23 in all non brain or muscle tissues (known in the

literature as isoform C or Camk2dC, (Xu et al., 2005)), high relative inclusion of NLS containing exon

21 in heart (isoform B or Camk2dB), and high levels of isoform A (Camk2dA), which includes exons

22 and 23, in the brain regions examined (Figure 7A). This result is consistent with previous reports

of Camk2d splicing patterns and isoform A being neuronal-specific (Xu et al., 2005). Importantly

though, MAJIQ also detects isolated inclusion of exon 23 in the heart (Figure 7A, green junction),

which is supported by both the RT-PCR experiment and analysis of an independent dataset across

heart development (see below). Previous studies focused on splicing regulation of Camk2d in the

heart used junction spanning primers that preclude detection of this highly utilized splicing choice

(Xu et al., 2005; Ye et al., 2015).

Because CAMK2 has been implicated in neurodevelopment and is proposed to be critical for

postnatal heart development (Xu et al., 2005), we next looked for developmental changes in LSVs

by analyzing RNA-seq data derived from mouse cortices (Yan et al., 2015) and hearts

(Giudice et al., 2014) at different time points. In the brain there is a switch in the splicing of Camk2d

between the C and the A isoforms, reaching over 80% use of the A isoform by postnatal day 15, cor-

responding to a time of intense synaptogenesis and plasticity (Licatalosi et al., 2012) (Figure 7B,

top). In the heart we see a more modest decrease in isoform C and increase in exon 23 only during

postnatal heart development (Figure 7B, bottom, compare purple with green), consistent with

results from RT-PCR from eight week old mice (Figure 7A). Notably, other CAMK2 subunits also dis-

played developmental dynamics in both tissues, such as inclusion of NLS containing exons in

Camk2g and Camk2a (Figure 7—figure supplement 1C and 2), an unannotated mouse cassette

exon in Camk2g regulated by the Rbfox family (Figure 7—figure supplement 1D–G), and a com-

plex LSV in the variable domain of Camk2b that affects autophosphorylation and is regulated by

Ptbp2 (Li et al., 2014) (Figure 7—figure supplement 3).

Given the suggested role of calcium signaling in neurodegeneration (Marambaud et al., 2009)

and CAMK2 implication in Alzheimer’s disease (AD) (Steiner et al., 1990), we also analyzed RNA-

seq data from three control brains and compared them to three AD brains (Bai et al., 2013). Strik-

ingly, in CAMK2D we observe a marked decrease of ~38% of the neuronal specific isoform of the

complex, developmentally-regulated mouse LSV we validated above, with reciprocal increase in the

all exclusion, isoform C in AD brains (Figure 7C). We also observe changes in a CAMK2G LSV that

corresponds to an unannotated mouse exon (Figure 7—figure supplement 1D,E). Importantly,

these exons are perfectly conserved between mouse and human at the amino acid level, further sug-

gesting physiologic importance of the novel splicing variations detected by MAJIQ. Finally, we vali-

dated that the observed CAMK2 splicing changes in AD brains can be reproduced in a second

independent study. We used data from the AMP-AD Target Discovery Consortium (doi:10.7303/

syn2580853) involving a larger cohort of 157 samples from AD patient’s brains and 128 control sam-

ples, across three different brain sub regions (Figure 7—figure supplement 4). Overall, we detected

approximately 200 LSVs that are reproducibly differentially spliced between AD and normal brains

(see Methods) and enriched in GO terms such as cytoskeleton, GTPase regulator activity, and syn-

apse organization (data not shown). This set constitutes approximately 12% of the changing LSVs

detected in the original dataset, a fraction that grows to 21% but only 164 LSVs if stricter filtering is

applied to both datasets (data not shown). This relatively low percentage of reproducible changes

across the two datasets can be at least partially attributed to the small number of samples in the

original study combined with an average of 1.8 fold lower coverage in the second, larger dataset.

Notably though, among the reproducible set of differentially spliced LSVs 79 are complex, a signifi-

cant, 1.2-fold enrichment compared to their relative proportion among all LSVs detected (p=0.04,

Figure 6 continued

Figure supplement 2. RT-PCR validation of complex Ptbp1 LSV across 11 mouse tissues.

DOI: 10.7554/eLife.11752.016
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Figure 7. Camk2d LSV exhibits complex developmental dynamics and is misregulated in Alzheimer’s disease. (A) Representation of complex source

LSV in Camk2d with matching RT-PCR validation in five tissues (brainstem, cerebellum, hypothalamus, heart, and adrenal). Colored arcs represent the

junctions quantified by MAJIQ for this LSV while dashed arcs correspond to junctions in the RNA-seq data that are not part of the quantified LSV. Violin

plots on the bottom display Y quantifications (x-axis) for each of the colored junctions (y-axis) across the five tissues with appropriate isoforms from the

gel on the right. Isoforms with known tissue-specific splicing patterns are labeled as in the literature (B) Line graphs of MAJIQ E[Y] quantification (y-

axis) of junctions as in (A) across time points (x-axis) through cortex development (top) and heart development (bottom). Points represent mean Y and

error bars represent one standard deviation in E[Y]. (C) DY quantification comparing changes between control and Alzheimer’s patient brains of the

homologous junctions illustrated in (A).

DOI: 10.7554/eLife.11752.017

The following figure supplements are available for figure 7:

Figure supplement 1. Complex and de novo LSVs in Camk2g are developmentally regulated and dysregulated in Alzheimer’s disease.

DOI: 10.7554/eLife.11752.018

Figure supplement 2. LSV in Camk2a is developmentally regulated oppositely in the brain and heart.

DOI: 10.7554/eLife.11752.019

Figure supplement 3. Developmentally controlled, complex LSV in Camk2b is regulated by Ptbp2.

DOI: 10.7554/eLife.11752.020

Figure supplement 4. Analysis of CAMK2D, CAMK2D, and CLTA LSVs in an independent Alzheimer’s cohort.

DOI: 10.7554/eLife.11752.021

Figure 7 continued on next page
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binomial test). While the validation and experimental follow up on these LSVs is beyond the scope of

this paper these results and the related CAMK2 analysis demonstrate the usefulness of our com-

bined approach for LSV detection, quantification, and visualization for disease studies.

Overall, our analysis of CAMK2 is in line with previous studies but also detects additional isoforms

and exons that are conserved, developmentally regulated, and dysregulated in AD, making for a

more accurate picture of CAMK2 splicing patterns. Additional complex LSVs we validated and ana-

lyzed include brain specific isoforms of the kinesin light chain Klc1, recently shown to be an amyloid-

beta accumulation modifier (Morihara et al., 2014) (Figure 7—figure supplement 5); the clathrin

light chain Clta, which displays developmental dynamics and dysregulation in both Alzheimer’s dis-

ease cohorts (Figure 7—figure supplement 6, Figure 7—figure supplement 4); and the translation

initiation factor scaffold Eif4g3, which has high inclusion of a cassette microexon specifically in cere-

bellum and a novel, muscle-specific exon (Figure 7—figure supplement 7).

Discussion
The work presented here spans a wide spectrum of topics from a new formulation of transcriptome

variations in units of local splicing variations (LSVs); through algorithms for detecting, quantification

and visualization of LSVs; a genome wide map of LSVs; analysis of the prevalence and functional sig-

nificance of complex LSVs; to validation of several complex LSVs that affect protein domains in

developmentally regulated genes with key roles in neurogenesis or other brain functions. For the lat-

ter, we also demonstrated dysregulation in Alzheimer’s disease using two independent datasets.

The new formulation of LSVs sheds light on what has thus far been mostly a ’dark side’ of the

transcriptome and RNA-Seq based studies, i.e. complex splicing variations. Several previous works

aimed to address the apparent representational gap between full transcripts and the classical binary

AS events. For example, (Nagasaki et al., 2006) developed an efficient bit array representation for

the various exonic segments that make up different gene isoforms, and (Sammeth et al., 2008) sug-

gested an elaborate notational system that allowed them to catalogue all the splicing variations in a

given transcriptome, comparing the frequencies of different AS types across 12 metazoa. More

recently, (Pervouchine et al., 2013) developed bam2ssj, a package implementing a general intron

centric approach to estimate AS from RNA-Seq data that can capture non classical AS variations.

bam2ssj gives a BAM-file–processing pipeline that counts junction reads to compute the ratio of

inclusion levels either from the 5’ or the 3’ end of an intron, denoted C5and C3.A different, graph

based, approach was taken by (Hu et al., 2013) where a splice graph is divided into subunits termed

alternative splicing modules (ASMs). ASMs are hierarchically structured, each capturing all the possi-

ble paths along a splice graph between specific start (‘single entry’) and end (‘single exit’) points.

The matching algorithm, DiffSplice, then aims to identify cases of differential transcription of ASMs

between two experimental conditions. All of these works differ substantially in the formulation of

splicing variation, the underlying algorithms, and visualization approach, yet all share the effort to

capture non classical AS types. In comparison, MAJIQ offers a unique approach that spans formula-

tion, detection, quantification and visualization of splicing variations. Unlike ASMs, LSVs can be

inferred directly from junction spanning reads and result in quantitative PSI and dPSI estimates, while

MAJIQ’s probabilistic model offers significant accuracy boost for PSI and dPSI estimates compared

to alternative methods.

The importance of LSVs formulation is manifested in how common complex LSVs are in diverse

metazoans, making up at least a third of observed LSVs in human and mouse. Complex LSVs are

also enriched for regulated splicing when analyzing over thirty datasets across different tissues,

developmental stages, splice factor knockdowns and neurodegenerative disease. In addition, LSV

Figure 7 continued

Figure supplement 5. Complex alternative end of Alzheimer’s-associated Klc1.

DOI: 10.7554/eLife.11752.022

Figure supplement 6. Clta splicing is developmentally regulated and dysregulated in Alzheimer’s Disease.

DOI: 10.7554/eLife.11752.023

Figure supplement 7. Eif4g3 splicing shows brain subregion-specificity and a novel exon in muscle.

DOI: 10.7554/eLife.11752.024
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formulation can be used to investigate substructures of the transcriptome. We found that the bio-

chemically-based proximity rule is commonly overcome at the genomic level and that complex LSVs

are less likely to have a dominant splice junction. As for LSVs possible function, our results indicate

that tissue dependent binary and complex LSVs both tend to occur in unstructured regions known to

affect protein-protein interactions, as well as in specific yet distinct protein domains and families.

In order to benefit from the new LSV formulation matching software is needed. The software we

developed, MAJIQ, is LSV focused and compares favorably with available tools on AS quantification

based both on RNA-Seq from biological replicates and on a compendium of over 200 RT-PCR

experiments. Unlike many tools, MAJIQ supplements annotated transcriptomes with novel splice

junctions, while VOILA allows the resulting LSVs to be interactively visualized within standard web

browsers. Thus, MAJIQ and VOILA offer a compelling LSV centered addition to tools such as MISO

(Katz et al., 2010), rMATS (Shen et al., 2014) and cuffdiff (Trapnell et al., 2013) that allow users to

quantify whole isoforms relative abundance, alternative polyadenylation, or differential expression.

Immediate applications of the novel LSV framework and the MAJIQ software cover a wide spec-

trum. Examples include improved disease studies where transcriptome variations play a role, enhanc-

ing predictive models for splicing and for the effect of genetic variants, studying the regulatory

underpinning of complex LSVs, and examining their evolutionary history. At the most basic level, our

results illustrate the potential for novel discoveries in reanalyzing previously published data with the

new LSV based methods. We anticipate the framework and resources provided here will form the

basis of many additional new discoveries in diverse fields.

Materials and methods

RNA-Seq read mapping
All RNA-Seq was mapped using STAR (Dobin et al., 2013). STAR was run with alignSJoverhangMin

8. We created the STAR genome based on mm10 or hg19, with an in-house junction DB containing

all possible junctions within each gene.

LSV definition
An LSV (local splice variation) is defined as a split in a splice graph into or from a single exon, termed

the reference exon. Single Source LSV (SS-LSV) correspond to splits from a reference exon to multi-

ple 3’ splice sites in downstream exons, single target LSV (ST-LSV) correspond to multiple 5’ splice

sites spliced to an upstream reference exon. The reference exon may include multiple 3’ splice sites

(ST-LSV) or 5’ splice sites (SS-LSV). An LSV type is defined by the reference exon type (SS, ST) and

the set of junctions it includes. Each junction is defined by the splice site ID in the reference exon,

and the splice site ID in its target/source exon.

Under the above formulation some SS-LSV and ST-LSV may include exactly the same set of edges

or one LSV may contain a subset of another LSV’s edges. For example the SS-LSV from exon 4 and

the ST-LSV into exon 5 in Figure 1A bottom are comprised of exactly the same edges, while the ST-

LSV into exon 2 is a subset of the SS-LSV from exon 1. Such cases are easily detected and removed

from further analysis to avoid redundancy.

It is important to note that under the LSV formulation classical cassette exons correspond to two

distinct LSVs, a single source and a single target. These LSVs are not redundant as they correspond

to different lines of experimental evidence; one from junction reads connecting the alternative mid-

dle exon with the upstream exon (SS-LSV) and one connecting the middle exon to the downstream

exon (ST-LSV). The separate quantification for such LSVs, combined with the joint visualization using

VOILA (see below), help distinguish between cases where the two LSVs give similar PSI or dPSI quan-

tifications and cases where they disagree. A case of possible disagreement is illustrated in the last

three exons of Figure 1A, where an alternative transcription start site and a third junction going into

the last exon may lead to different PSI values.

LSV as structural network motifs
The above definition gives a one-to-one mapping between a local splice graph split and an LSV

type. Given a set of LSVs we can compute a distribution over their types or group several types

together to detect a distribution over specific LSV features. We note that unlike the analysis of
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network motifs in Milo et al. (2002), we do not compare LSVs to random connections in a network

as the null hypothesis, but rather to a sequential network where all exons are connected via a single

path. Thus, we compute a distribution over relevant statistics such as the number of junctions in the

reference exon, the total number of junctions or the total number of exons in the LSV (Figure 4).

MAJIQ
MAJIQ is comprised of two main components, a builder and a quantifier. The builder analyzes a

given set of RNA-Seq experiments and a transcriptome database to detect LSVs (either known or

de-novo) and create a splice graph for each gene in the database. The quantifier subsequently esti-

mates PSI or dPSI for LSVs detected by the builder.

MAJIQ Builder
The builder accepts as input a list of RNA-Seq indexed BAM files and a transcriptome database. For

each gene defined in the database it determines all its known exons, associated 3’/5’ splice sites,

and the splice graph edges (i.e. splice sites spliced together). It then scans the BAM files to find

which of those edges are supported by RNA-Seq reads, and which de-novo splice sites and edges

should be added based on junction reads. A user-controlled filter defines which edge is considered

’reliable’ to be included in the splice graph. The default is set to “appears in the database or has at

least two reads from two different positions”. In order to create the splice graph, MAJIQ combines

the known transcriptome with the reliable de-novo junctions. If de-novo 3’ or 5’ splice sites are found

outside the boundaries of any annotated exons, they are connected to the proximal upstream or

downstream exon, respectively. If such a de-novo 3’ splice site is followed by a de-novo 5’ splice site

then the area in between is denoted as a putative de-novo exon. However, de-novo exonic regions

added to the splice graph are not allowed to exceed a user-defined threshold. The default threshold

is set to 500bp, which corresponds to approximately the 95 percentile of known exons length in the

mouse genome. In cases where a de-novo exonic extension might have exceeded this threshold it is

instead used to create an ’open ended’ putative de-novo exonic region with its boundaries marked

accordingly. All the de-novo junctions and exonic regions are marked in green in VOILA’s output

(see for example Figure 6—figure supplement 1A). Finally, for retained introns, an additional filter

is added for the average coverage in consecutive windows across the intron. The default is set to 1.5

(see Supplementary Figure 4—figure supplement 1A, B) but it is important to adjust this threshold

depending on the coverage depth and how permissive one wants to be when calling retained

introns.

In the next step, the builder creates a list of LSVs that are considered to ’exist in the data’ based

on a second user defined filter. The default for this filter is ’all the LSV junctions are reliable and at

least one junction has at least two reads from at least two positions’. Intuitively this setting retains

only LSVs for which there is evidence for expression of at least some gene isoforms involved in that

LSV though not all edges involved in the LSV will necessarily be found in the data. The MAJIQ

Builder outputs two types of binary files, the first including the LSVs to be quantified by the MAJIQ

quantifier, the second including the splice graphs to be visualized by VOILA.

MAJIQ quantifier
The quantifier estimates the fraction each LSV junction is selected, denoted percent selected index

(PSI or Y), or the changes in each junction’s PSI between two experimental conditions with or with-

out replicates (dPSI or DY). These fractions are inferred from short sequence reads that span across

junctions (junction reads), whose distribution can be affected by many factors. Consequently, MAJIQ

quantifies PSI and dPSI not as a point estimate but as a posterior distribution over possible fractions

in the range [0,1]. Importantly, the quantifier screens the builder’s list of LSVs for those that are

deemed ’quantifiable’ by a user-defined filter. Intuitively, the sparsity of RNA-Seq data results in

many LSVs being reliably detected by RNA-Seq yet lacking sufficient read coverage to accurately

quantify PSI or to confidently infer significant changes in PSI across conditions. By filtering those

from downstream analysis by the quantifier significant computational resources can be saved. The

default for the quantifiable filter is at least 10 reads from at least 3 positions.

The first step in MAJIQ’s quantification is estimating the read rate per position in each junction,

after correcting for GC content bias (Risso et al., 2011). Note that here the position’s read rate
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corresponds to reads that start/end at that position, not reads that overlap it. The estimation of

each junction’s read rate involves three components: A global parametric model per experiment for

read count variability; a stack removal procedure; and a local estimator for read rate derived from

bootstrapping over each junction’s relevant positions. For the global parametric model MAJIQ uses

the zero truncated negative binomial (ZTNB) distribution. The dispersion parameter rt is optimized

per experiment t by bootstrapping over non-zero positions in a randomly selected set of up to

10,000 quantifiable junctions. Next, given the derived negative binomial model with dispersion r,

MAJIQ performs a screening step to detect possible read stacks. A read stack is defined as a posi-

tion i in junction j with an observed read rate xj,i which is highly unlikely given r and the average read

rate in other non zero positions in the junction. After experimentation with the effect on reproduc-

ibility, a conservative threshold of p-val � 10�7 was set as the default to flag possible read stacks.

Flagged positions and their respective reads are then removed from further consideration. Finally,

we noticed that even after fitting a global dispersion parameter per experiment rt and discarding

read stacks the data still exhibits variability not fully accounted for by this model (data not shown).

Therefore, and in order to account for local dispersion (i.e. at a specific junction) we bootstrap N

positions from the relevant set of positions to get an estimate for the read rate in junction j

�j ¼ Wj
1

N

P

N

n¼1

cj;in where cj;in is the observed number of reads that start in the in sampled position

and Wj is the number of relevant positions in junction j. Here, the relevant positions refer to those

where uniquely mapped, non-stack, reads start. By repeating this procedure M times we get an

empirical distribution over �j estimates. These M samples are then used for computing posterior dis-

tributions over PSI and DPSI.

Estimating the percent selected index (PSI, or Y) per junction j in a given LSV e in experiment t

requires to derive a posterior distribution over multinomial distributions Ce = {Ce,j}
J, s.t.

P

Ce,j = 1,

8e,j 0 � Ce,j � 1. Previous works concentrated on common cases involving two junctions such as cas-

sette exons, where the posterior for Y can be computed in closed form using for example a Beta

prior. For more complex cases where J > 2 the PSI posterior was commonly computed either as a

point estimate (e.g., ML estimator using EM) or using MCMC sampling techniques (Katz et al.,

2010). In general, sampling based estimation for Ce,j or DCe,j (below) scales exponentially in the

number of junctions J and is also hard to visualize beyond J = 2. However, noting that in most cases

researchers are interested in relative abundance of specific variants rather than a complete distribu-

tion over all isoforms, MAJIQ side steps these issues by computing only the posterior marginal distri-

butions per variant. This computation scales linearly with J and simplifies both downstream analysis

and visualization of the results. It has been previously observed that alternative junctions in a given

experimental condition generally tend to be either highly included or highly excluded (Shen et al.,

2012; Wu et al., 2011). In line with these observations and based on fitting empirical distributions

of observed PSI (data not shown) MAJIQ uses the following prior: P0 Ce;j

� �

~Beta a ¼ 1

J
h;b ¼ J�1

J
h

� �

.

The default is h ¼ 1 resulting in a Jeffery prior that encourages either high inclusion or exclusion lev-

els, but any (a, b) can be set. MAJIQ then uses the M read samples per junction (see above) to get a

posterior Ce,j as an average over those posterior distributions.

PSI and DPSI are modeled as continuous random variables confined to the intervals [0, 1] and [�1,

1] respectively. In practice though, the required precision for these quantities is limited by both the

problem being studied and the experimental techniques used to validate results (e.g., RT-PCR). This

observation motivates MAJIQ’s discretized representation of possible PSI and DPSI. The discretiza-

tion level, controlled by a tunable resolution parameter V, allows explicit tradeoff between accuracy

and computation cost. Setting V = 40 (default) results in 2.5% PSI resolution. This discretization

allows MAJIQ’s implementation to maintain and visualize a full distribution over PSI and DPSI, exploit

efficient matrix operations for the entire range of C values and avoid costly sampling procedures.

MAJIQ’s estimation of DCe
t;t0 for LSV e between experiments t,t¢ is based on a joint prior

P0(Ct,Ct¢). While many previous works implicitly assume independence (i.e., P0(Ct,Ct¢) ~ P0(Ct)

P0(Ct¢)) both MAJIQ and rMATS (Shen et al., 2014) use a prior biased towards similar Yt, Yt0 values,

which helps overcome falsely reporting high DY due to fluctuations in small read counts. However,

unlike rMATS that uses a multivariate uniform prior for DY, MAJIQ combines the P0(C) prior

described above with a DY prior: P0(Ct,Ct¢)= P0(Ct)P0(Ct¢)P0(DC = Ct � Ct’), with P0(DC) having the

form of a mixture of beta distributions:
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P0ðDCÞ ¼
X

K

K¼1

P ðkÞBetaðDCjaðkÞ;bðkÞÞ:

After some experimentation and measuring the effect on LSV quantification (data not shown), we

found the following settings worked well. We set K = 3 with one component set as a spike at DY =

0, the second as a beta distribution of small perturbations around 0, and the third mixture compo-

nent set to a flat uniform prior (a = b = 1). Given the above prior, the joint posterior distribution is

given by:

P ðCe
t ;C

e
t
0 jDe

t ;D
e
t
0 Þ / P0ðDC

e
t;t

0 ÞP ðCe
t jD

e
t ÞP ðCe

t0 jD
e
t0Þ;

where De
t represents the set of estimated number of reads per junction in the m-th sample (see

above) and P(Ce
t|D

e
t) is the posterior beta distribution given the observed reads. Similarly, when

comparing two conditions T, T¢ with replicates we have:

P ðCe
T ;C

e
T 0 jDe

T ;D
e
T 0Þ / P0ðDC

e
t;t

0 ÞP ðCe
T jD

e
1
; . . . ;De

T ÞP ðCe
T jD

e
1
; . . . ;De

T Þ

with the last two terms decomposing elegantly by the chain rule for the conjugate beta prior. More

information regarding MAJIQ’s usage and parameters can be found in the software’s tutorial, avail-

able at majiq.biociphers.org.

VOILA
VOILA creates HTML5 based visualization of gene splice graphs, LSVs, PSI and dPSI estimates. It

uses two types of input files: a binary file output from MAJIQ builder summarizing gene splice

graphs, and another binary file from MAJIQ quantifier summarizing LSV PSI/dPSI quantifications.

The HTML5 lists splice graphs and associated LSVs according to user defined filters. Distributions

over PSI or dPSI are represented using violin plots and each splice graph and LSV is also linked to

the UCSC genome browser to allow comparison to raw reads or other track information. Interactive

filters allow users to select which types of LSVs to display while a table view allows users to sort and

search LSVs.

The VOILA splice graphs, LSVs cartoons and violin plots are shown in Figure 6,7 and their respec-

tive supplementary figures. The original VOILA plots used for these figures can be found at: majiq.

biociphers.org. More information regarding VOILA usage and parameters can be found in the soft-

ware’s user guide, available at majiq.biociphers.org.

PSI reproducibility
PSI reproducibility by RNA-Seq from biological replicates was evaluated using the following proce-

dure. First, MAJIQ Builder was executed to detect the union set of LSVs in a set of biological repli-

cates of hippocampus and liver from Keane et al. (2011). To avoid redundancy and enable

comparison to other methods only a single junction from binary LSVs were included in downstream

analysis. Next, for each replicate pair the difference in LSV quantification for each LSV was computed

as R(YMAJIQ) = E[Yr1]-E[Yr1]. LSVs that were only detected in one of the replicates were discarded.

The same set of LSVs were fed into MISO using the MAJIQ Builder GFF3 output file and the same

procedure was executed to compute R(YMISO). This procedure was repeated 6 times to compute

the mean and standard errors for the empirical R(Y) PDF shown in Figure 2—figure supplement

1C. The empirical PDF and standard error for the difference in reproducibility DR = RMISO- RMAJIQ

(Figure 2—figure supplement 1C inset graph) were computed by a similar procedure.

PSI reproducibility by RT-PCR was evaluated using the following procedure. For the data from

Zhang et al. (2014), we first selected LSVs that were estimated by MAJIQ to be differentially spliced

with high confidence (P( DY >0.2) > 0.95)) when using three samples from cerebellum and liver. This

allowed us to also assess dPSI reproducibility for a wide range of dPSI values (see below). Next, for

each LSV the total number of reads starting at positions within all the LSV’s junctions in each repli-

cate were summed together for each tissue. Then, the LSVs were binned by the average total read

coverage in the two tissues. Bins were defined to be: 10–30, 30–40, 40–80, 80–200, and above

200 reads. From each such bin, a set of LSVs was randomly selected for RT-PCR validation. Each RT-

PCR was executed in triplicates (see below). Finally, the average PSI by RT-PCR and the expected

PSI by either MAJIQ or MISO were used to produce Figure 2, and Figure 2—figure supplement 1.
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MISO was executed with default parameters. For the stimulated and unstimulated T-Cell dataset, we

collected a compendium of historical RT-PCR quantifications for previously annotated cassette

exons. These experiments were executed by different Lynch lab members across several years and

pre selected for specific studies regardless of dPSI or RNA-Seq coverage level. The vast majority of

these cassette exons did not exhibit differential splicing between stimulated and unstimulated cells

and some lacked triplicates. This set of previously annotated cassette exons was mapped to

MAJIQ’s LVS and then quantified using RNA-Seq from Cole et al. (2015) (Figure 2, Figure 2—fig-

ure supplement 1, circle shaped points).

dPSI reproducibility
dPSI reproducibility by RNA-Seq from biological replicates was evaluated using the following proce-

dure. First, the MAJIQ Builder was executed for all replicates of hippocampus and liver experiments

from Keane et al. (2011), yielding the union of all LSVs in these experiments. Next, for each liver

and hippocampus pair of experiments, all quantifiable LSVs were ranked according to their E[DY]

and the set of N LSVs with significant splicing changes at high confidence was defined as LSVs for

which P( DY >0.2) > 0.95. This threshold was selected to be conservative, but see Figure 2—figure

supplement 2A for more relaxed thresholds. This process was then repeated in another pair of

experiments and the relative rank of the original set of N LSVs was recorded. The reproducibility

ratio RR n
N

� �

of any ranked LSVs subset n 2 1 . . .N was defined as the fraction n�
N
where n* is the sub-

set of the first n ranked LSVs that were in the N best ranked LSVs by the replicate experiments. Simi-

lar to the IRD statistic used to assess reproducibility of Chip-Seq peak calling (Li et al., 2011), a

perfect RR(n) graph follows the diagonal line. Unlike IRD though, the RR statistic is invariant to small

or even complete perturbations in the relative rank of the top ranked LSVs. Intuitively, this means

that the RR will remain the same as long as the same subset n* makes the best N cutoff. It is impor-

tant to note that the RR value can vary greatly, affected by biological, experimental, and technical

factors. Nonetheless, one can use the RR to assess reproducibility in specific settings, or compare

dPSI reproducibility by different algorithms under the same experimental setup.

An inherent challenge in comparing MAJIQ to other methods is that MAJIQ quantifies LSVs while

other methods quantify the classical AS event types. One complication as a result of that is that while

redundant LSVs are removed (see above) different LSVs may still partially overlap. A good example

for that are cassette exons. In the LSV formulation a differentially included cassette exon may have

two LSVs that support it, corresponding to different lines of experimental evidence (junction reads

from the up and downstream exons) but other methods/tools will only count this exon as a single

event. This in turn may bias both the reproducibility ratio (RR) and detection power (N) in favor of

MAJIQ. In our experiments, when we ignored such possible overlap of LSVs the reproducibility ratio

remained the same but the number of differentially spliced LSVs detected was significantly higher

(RR=86%, N = 752, data not shown). In order to avoid such a bias in favor of MAJIQ we imple-

mented a conservative approach where the ranked LSVs are filtered so that no LSV contained over-

lapping exons with another LSV. We note this is a conservative filter as there may be complex LSVs

that involve multiple differentially spliced exons, or cases where the same exone involves different

variations (e.g. skipping the exon but also alternative 3’ or 5’ splice sites). In such cases only a single

LSV would pass that filter while the methods we compared to would still be able to retain separate

AS events for those.

dPSI reproducibility for MISO was evaluated by the following procedure. First, we followed

MISO’s (Katz et al., 2010) guidelines for performing exon-centeric analysis (i.e. AS events) rather

than whole transcripts analysis. For this, we used the set of alternative events for the mm10 mouse

genome provided by MISO. We indexed the GFF3 file and ran MISO with default parameters on the

same data pairs of experiments described above to compute expected dPSI (E[DYMISO]). Finally, we

ranked LSVs by decreasing expected dPSI and computed the reproducibility ratio (RR) as described

above. As MISO does not supply a statistical criteria for selecting the number of events (N) from its

ranked list, we used the number produced by rMATS. Changing N to the higher number of LSVs

detected by MAJIQ degraded MISO’s performance (data not shown).

dPSI reproducibility for rMATS was evaluated by the following procedure. We ran rMATS

(Shen et al., 2014) with replicates (groups) and without them (pairs), using ENSEMBL annotation file

in GTF format. rMATS estimates differential expression for each one of the classic alternative splicing
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events it identifies from the annotation file (exon skipping, 5 and 3 prime splice site donor/acceptor,

mutually exclusive exons and intron retention). We used the default parameters except for the cutoff

employed to compute the FDR associated to each AS event quantification, which was set to 0.2 (see

Figure 2—figure supplement 2A for the impact in reproducibility of different cutoffs). Lastly, we

extracted the RR for confident changing AS events identified by rMATS (FDR < 0.05, P( DY >0.2) as

reported in the rMATS output file).

dPSI reproducibility for the Naive Bootstrapping approach used in Xiong et al. (2015) for cas-

sette exons was adopted for LSVs using the following procedure. First, we implemented the boot-

strapping over junction positions described in Xiong et al. (2015), with the same beta prior to avoid

zero read counts. These samples gave an empirical distribution over possible PSI values and these

were subsequently used to estimate the expected PSI. Similar to MISO, the Naive Bootstrapping

approach does not assume a joint prior so that the expected dPSI estimates are simply the differ-

ence in the expected PSI in each experiment. The resulting expected dPSI was then used to rank the

LSVs, filter them for possible overlap of exons, and compute RR as described above.

dPSI accuracy by RT-PCR was evaluated by the same procedure as that described above for PSI.

DYRT was then computed as the difference between the average of each triplicate set of experi-

ments in cerebellum and liver or the difference between previously recorded measurements in the

Lynch Lab for the stimulated vs. unstimulated T-Cells. dPSI reproducibility by RT-PCR was defined as

cases for which DYRT >20%. This definition allowed assessing false positives and false negatives (Fig-

ure 2—figure supplement 1B, Figure 2—figure supplement 2B).

Protein feature enrichment
In order to construct the LSV junctions and protein features (PF) table we first built the union set of

LSVs detected from Zhang et al. (2014). We used ENSEMBL RESTful services [http://www.ncbi.nlm.

nih.gov/pubmed/25236461] to retrieve PF along with their genomic coordinates associated with

transcripts containing LSVs. Next, we annotated each LSV junction by PF that overlap its reference

exon and its target/source exon, discarding junctions in non-coding regions. Because the overlap of

a LSV junction region and a protein feature can be partial, we considered a PF to be associated with

a junction when there was at least a 20% overlap. Lastly, we labeled as changing junctions those that

had an estimated delta psi greater than 20% in any two tissues.

We assessed relative enrichment of PFs using the following procedure when comparing groups of

LSV junctions such as changing vs. unchanging, or binary vs. complex. For each PF we computed the

p-value by Fisher’s Exact Test (FET) for its distribution between the two junction groups compared.

To correct for multiple hypotheses testing while accounting for the high correlation between some

PF we applied a permutation based testing procedure (Column M). Specifically, we shuffled the

labels (e.g. changing, unchanging) but controlled for the LSV origin of each junction. Thus, junctions

from the same LSV were randomly switched with junctions from an LSV with the same number of

junctions. This procedure guarantees that the number of labeled junctions remains the same, helps

control for correlation between PF of junctions in the same LSV and for the distribution of LSV types.

We repeated this process 10000 times and then calculate an empirical corrected FET p-value. The

results from this analysis are included in Supplementary file 1.

LSVs species analysis
RNA-Seq data for lizard and chicken was downloaded from Barbosa-Morais et al. (2012); opossum

and chimp datasets were downloaded from Brawand et al. (2011). RNA-Seq for human was down-

loaded from Illumina’s Body Atlas 2.0 (NCBI GSE30611). Transcriptomes were downloaded from

Ensembl for lizard (genome assembly AnoCar2.0), chicken (assembly Galgal4), opossum (assembly

monDom5), chimp (assembly Pan_troglodytes-2.1.3), mouse (assembly GRCm38.p3) and human

(assembly GRCh38.p2). For mouse and human RefSeq transcriptome annotations were used for com-

parison (Figure 3). The latest genome builds annotated in RefSeq were used, GRCm38/mm10 for

mouse and GRCh37/hg19 for human.

Meta analysis of complex LSVs across datasets
In order to assess the prevalence and potential enrichment of complex LSVs across additional data-

sets beyond the 12 mouse tissues, we analyzed a number of additional datasets shown in Figure 5A
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and Figure 5—source data 1. All raw data was downloaded from SRA and mapped using STAR as

described above. In a select number of older or low-coverage experiments, mapped reads from rep-

licates were pooled together before analyzing with MAJIQ (see ’Notes on processing’, Figure 5—

source data 1). MAJIQ dPSI was run for each comparison (e.g., tissue pairs, pairwise developmental

time points, control versus altered splice factor expression). LSVs were considered differentially

spliced if E[DY] > 20%. For datasets with multiple conditions (e.g. 12 tissues, or multiple develop-

mental timepoints), the union of differentially spliced LSVs and all detected LSVs between all pair-

wise comparisons was considered.

The enrichment of complex LSVs in the differentially spliced group compared to their relative pro-

portion among all detected LSVs in each dataset was evaluated using a binomial test, with a Bonfer-

roni correction for the number of datasets used. All counts, SRA and GEO data accession numbers,

and PubMed IDs for each study are detailed in Figure 5—source data 1.

To assess the distributions of PSI and dPSI across all datasets in Figure 5B and Figure 5—figure

supplement 1, we considered only the LSVs and junctions detected across the 12 mouse tissues and

required exact matches to these junctions in the additional datasets in order to consider those PSI

or dPSI values in the analysis. This conservative approach ensured we only monitored ’natural’ LSVs

and no LSVs that are unique to a specific cell line or KD experiment.

Analysis of splicing changes in Alzheimer’s disease in two cohorts
In order to validate splicing changes in AD identified for the complex LSVs examined in this study

(CAMK2D, CAMK2G, and CLTA) we took all differentially spliced LSVs we identified from the

3 healthy and 3 AD brains (Bai et al., 2013) and looked for similar changes in an independent, larger

cohort. We used data from the Mount Sinai Brain Bank (MSBB) RNA sequencing study (ID:

syn3157743, accessed at https://www.synapse.org/#!Synapse:syn3157743)

We focused on samples that came from healthy brains and definite AD brains, based on CERAD

Neuropathology Criteria given, across the following brain regions: frontal pole (healthy: n=58, AD:

n=62); superior temporal gyrus (healthy: n=37, AD: n=50); parahippocampal gyrus (healthy: n=33,

AD: n=45). Because overall coverage was lower in these datasets compared to the original cohort,

which affects the ability to detect intron retention (data not shown), we ran MAJIQ Builder on both

datasets with a high threshold for IR detection (–min_intronic_cov 1000) in order to only compare

exonic LSVs. Additionally, to account for heterogeneity in the data and to save computational time

we considered PSI values for each patient separately, as opposed to running all possible pairwise

dPSI comparisons.

An LSV that was changing in the first cohort was considered validated if in the MSBB cohort the

distribution of PSI values for the most changing junction was significantly different between healthy

and AD individuals in at least one brain subregion (p<0.05, two-tailed rank sum test) with a differ-

ence in the median PSI of > 10% in the same direction as the original cohort. This lead to 199 LSVs

in 145 genes changing in both cohorts. Finally, DAVID was used to find enriched GO terms among

these genes with shared differentially spliced LSVs between the two cohorts using default parame-

ters (Huang et al., 2008).

LSV conservation analysis
The conservation plots in Figure 5C were generated using the union of the changing LSV from the

66 pairwise tissue comparisons shown in Figure 4E. For each such LSV we extracted the phast-

Cons60 conservation scores for vertebrates (Siepel et al., 2005) for the first 50 positions in each

exon and the first 300 intronic positions proximal to each exon.

It is not immediately clear which of the variable regions in a complex LSV (left hand plot for the

single source LSVs, right hand plot for the single target LSVs in Figure 5C) should be included in

such conservation analysis. Previous work focused on binary cases of cassette exons and compared

constitutive exons to the regions around the alternative exon, which tend to be more conserved.

Since the focus of this analysis was on conservation of possible regulation in LSV units we chose to

apply the max function for each position in such variable LSV regions. To partially correct for the

possible bias for high scores that the max operation may introduce we also applied it to the binary

LSVs and to randomly selected sets of K constitutive exons, where the size K is sampled based on

the distribution of number of exons in LSVs (Figure 4C). Overall we sampled 5000 such sets for the
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constitutive regions plot. Finally, the lines in Figure 5C were smoothed using a 5 bases sliding

window.

RT-PCR validations
Total RNA was extracted from mouse tissues as described previously (Zhang et al., 2014). For each

tissue three samples corresponding to RNA from circadian times 31, 41, and 53 were used for valida-

tion. For additional validations we used total RNA extracted from a clonal Jurkat T cell line (JSL1,

described in detail previously [Lynch and Weiss, 2000]) cultured in RPMI medium supplemented

with 5% heat-inactivated fetal bovine serum (unstimulated) or the same growth medium supple-

mented with the phorbol ester PMA (Sigma-Aldrich, St. Louis, MO) at a concentration of 20 ng/mL

(stimulated). Stable identify of this clonal line is continuously monitored by assessing hallmark

changes in splicing induced by PMA (Cole et al., 2015; Martinez et al., 2012; Shankarling et al.,

2013).

Low cycle reverse transcription-PCR (RT-PCR) was performed on 0.5 micrograms of RNA as

described previously in detail (Rothrock et al., 2003) using sequence specific primers. Gels were

quantified by densitometry with the use of a Typhoon PhosphorImager (Amersham Biosciences, UK).

Primers and expected size of products for all events are given in Supplementary file 2.

For cassette exon LSVs percent spliced in was calculated as the percent of isoforms including the

alternative exon over the total inclusion and exclusion isoforms. For complex LSVs, each band pres-

ent on the gel was quantified. The percent selected index (PSI) for each junction of an LSV was calcu-

lated as the isoform(s) including that junction over the total isoforms present. For example, for the

Camk2g source LSV (Figure 1C) the percent usage of the red junction that goes from the reference

source exon 14 to exon 15 corresponds to the sum of the bands corresponding to the 214 nt iso-

form that includes exon 15 alone and the 256 nt isoform that includes both exons 15 and 16.

Software availability
MAJIQ and VOILA are available for download at majiq.biociphers.org
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